## Human-Artificial Intelligent Threat Modelling in the Automotive Domain

G. Bella, G. Castiglione, S. Esposito,
M.G. Mangano, G. Pampallona, <u>M. Raciti</u>,
S. Riccobene, D.F. Santamaria





09/07/25 – Ischia, IT

**IOLTS 2025** 

## It's Official: Cars Are the Worst Product Category We Have Ever Reviewed for Privacy



By Jen Caltrider, Misha Rykov and Zoë MacDonald | Sept. 6, 2023

Home » Privacy

Smart cars vs. privacy: a driverless car could generate 100 GB of data per second

## Toyota Japan exposed millions of vehicles' location data for a decade



## **Related Work**

S

### STRIDE Threat Model

#### Spoofing identity

 Illegally accessing and then using another user's authentication information

#### Tampering with data

- Malicious modification
- Unauthorized changes

#### Repudiation

- Deny performing an malicious action
- Non-repudiation refers to the ability of a system to counter repudiation threats

#### Elevation of privilege

- Unprivileged user gains privileged access to compromise the system
- Effectively penetrated and become part of the trusted system

#### **Denial of service**

- · Deny service to valid users
- · Threats to system availability and reliability

#### Information disclosure

Exposure of information to individuals not supposed to access



Zero Trust, Pseudonymisation, Data Minimisation widely recognised as foundational principles

## A Glimpse at SCAR4SUD

### SCAR's Four Security-Unravelling Dimensions (SCAR4SUD)



### **Objectives:**

- **1** Integrating multi-layered security and privacy engineering practices
- 2 Defending by multi-layer measures, including hardware, software, and communication protocols
- **3** Securing and protecting personal data in automotive
- **4** Integrating multi-disciplinary approaches towards security and privacy

## Gap and Contributions

### Traditional threat modelling is often manual and time-consuming

Regulatory demands are increasing, especially for modern systems (e.g., automotive)



<u>Our work:</u>

Takes a *multi-level* Human Artificial Intelligence (HAI) approach through *four phases* 

Ensures coverage of both security and privacy threats and their mitigation

- 1. Introduction
- 2. Methodology
- 3. Augmented Mitigation Plan
- 4. Conclusions

## Methodology in a Nutshell

Our methodology is **multi-level** because it involves a few **levels of refinement** of the target outputs *sequentially* 

This implies **Human-Artificial Intelligence** *loop* in each phase



Each of the phases is executed using different instantiations of this multi-level strategy

- 1. Introduction
- 2. Methodology  $\rightarrow$  Target System Modelling
- 3. Partial Validation
- 4. Conclusions

## **Target System Modelling**

The input is a structured technical document describing the SCAR4SUD architecture

(L1: AI) LLM parses the document and extracts diagrams in textual form

**L2: Human)** Expert validation and refinement of the diagrams

The output is a ground-truth system representation



- 1. Introduction
- 2. Methodology  $\rightarrow$  Asset and Threat Elicitation
- 3. Partial Validation
- 4. Conclusions

## **Asset Identification**

We operate in a *three-level* style due to the need for **semantic grounding** 

(L1: AI) LLM generates the initial asset lists at an abstract level

- **L2: Human)** Experts identify semantic relations for refinement
- (L3: AI) LLM few-shot prompting to regenerate enhanced results



Reflects an iterative <u>abstraction-specialisation loop</u>, guided by *taxonomic knowledge* and *controlled prompting* 

| Asset                             | Brief description                                       |
|-----------------------------------|---------------------------------------------------------|
| Cryptographic Keys                | Cryptographic material that is deemed to be kept secret |
| Device Identity                   | Identifiers of any electronic network component         |
| Authentication Credentials        | Credentials used to go through login                    |
| Secure Boot Measures              | Information used to verify boot integrity               |
| V2X Messages (Signed & Encrypted) | Signed/encrypted messages exchanged among vehicles      |
| Secure Communication Channels     | Links within the communication infrastructure           |
| Middleware Interfaces             | API-exposed services                                    |
| Log Records                       | Log information supporting auditing processes           |
| Key Management Infrastructure     | Key lifecycle framework                                 |
| RSU Trust Components              | RSU-local functional elements                           |

Table 2: Security assets from L1 identification step

Table 3: Security assets from L2 identification step

| Asset                             | Examples                                                                                                                                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Cryptographic Keys                | Long-term keys, session keys, pseudonym keys                                                                                             |
| Device Identity                   | Device fingerprint id, (physical) mac address, device (private) key<br>stored in the TPM                                                 |
| Authentication Credentials        | Password, passkey, passphrase, key, token, OTP, wearable devices                                                                         |
| Secure Boot Measures              | Firmware signatures, Operating System signatures, hash values                                                                            |
| V2X Messages (Signed & Encrypted) | Vehicle-to-vehicle communications, DSRC messages, WAVE messages, vehicle-to-infrastructure communications, vehicle-to-RSU communications |
| Secure Communication Channels     | TLS channels, IPSec channels, IEEE 1609.2 channels                                                                                       |
| Middleware Interfaces             | API keys, API interfaces, APIs, microservices, Model Context Proto-<br>col                                                               |
| Log Records                       | Access logs, command history logs, network logs, system logs, Oper-<br>ating System logs                                                 |
| Key Management Infrastructure     | Public-key infrastructures, key stores, key rings, HSMs, TPMs, cer-<br>tificate authorities, certificates                                |
| RSU Trust Components              | Failover mechanisms, edge computing modules, V2X sensors                                                                                 |

| Asset                             | Specific assets                                                                                                                                                                                                                       |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cryptographic Keys                | Long-term keys, session keys, pseudonym keys, pseudonym keys,<br>group keys, pre-shared keys, KEKs, DEKs, attestation keys, update<br>signing key, ephemeral Keys                                                                     |
| Device Identity                   | Device fingerprint id, (physical) mac address, device (private) key<br>stored in the TPM, VIN, hardware serial number, IMEI / eUICC,<br>certificate thumbprint, software-defined identifier                                           |
| Authentication Credentials        | Password, passkey, passphrase, key, token, OTP, wearable devices                                                                                                                                                                      |
| Secure Boot Measures              | Firmware signatures, Operating System signatures, hash values                                                                                                                                                                         |
| V2X Messages (Signed & Encrypted) | Vehicle-to-vehicle communications, DSRC messages, WAVE messages, vehicle-to-infrastructure communications, vehicle-to-RSU communications                                                                                              |
| Secure Communication Channels     | TLS channels, IPSec channels, IEEE 1609.2 channels                                                                                                                                                                                    |
| Middleware Interfaces             | API keys, API interfaces, APIs, microservices, Model Context Proto-<br>col                                                                                                                                                            |
| Log Records                       | Access logs, command history logs, network logs, system logs, Oper-<br>ating System logs                                                                                                                                              |
| Key Management Infrastructure     | Public-key infrastructures, key stores, key rings, HSMs, TPMs, cer-<br>tificate authorities, certificates                                                                                                                             |
| RSU Trust Components              | Failover mechanisms, edge computing modules, V2X sensors, certifi-<br>cate validation engine, CRL caching & distribution, hardware root of<br>trust (RoT), trusted time synchronization source, revocation enforce-<br>ment mechanism |

## **Threat Elicitation**

Threats are generated using a similar approach

- **L1: Human)** Experts apply STRIDE and LINDDUN to the initial asset lists
- **L2: Human)** Experts apply STRIDE and LINDDUN to the specific assets
- (L3: AI) LLM generates a list of concrete instantiations of the threats



| Asset                             | S | т | R | I | D | $\mathbf{E}$ |
|-----------------------------------|---|---|---|---|---|--------------|
| Cryptographic Keys                | ~ | ~ |   | ~ |   |              |
| Device Identity                   | ~ | ~ | ~ | ~ |   | ~            |
| Authentication Credentials        | ~ | ~ |   | ~ |   |              |
| Secure Boot Measures              | ~ | ~ |   | ~ |   |              |
| V2X Messages (Signed & Encrypted) | ~ | ~ |   | ~ |   |              |
| Secure Communication Channels     | ~ | ~ | ~ | ~ | ~ | V            |
| Middleware Interfaces             | ~ | ~ | ~ | ~ | ~ | ~            |
| Logging and Audit Records         |   | ~ | ~ | ~ |   |              |
| Key Management Infrastructure     | ~ | ~ | ~ | ~ | ~ | ~            |
| RSU Trust Components              | ~ | ~ | ~ | ~ | ~ | V            |

Table 8: Threat elicitation STRIDE at L1

Table 9: Threat elicitation LINDDUN at L1

| Asset                          | $\mathbf{L}$ | Ι | Ν | D | D | U | N |
|--------------------------------|--------------|---|---|---|---|---|---|
| Vehicle Identifiers            | ~            | ~ | ~ | ~ |   |   | ~ |
| Location Information           | ~            | ~ | ~ | ~ | ~ | ~ |   |
| Communication Metadata         | ~            | ~ | ~ | ~ | ~ | ~ |   |
| User Behavior & Preferences    | ~            | ~ | ~ | V |   | ~ | V |
| Transmitted Message Content    |              | ~ |   | V | ~ | ~ |   |
| Log Data with Personal Context | ~            | ~ | ~ | V | ~ | ~ | V |
| OTA Update Records             |              |   |   |   | ~ | ~ |   |
| Cloud-Linked Identifiers       | ~            | ~ | ~ | ~ |   | ~ | ~ |

### Cryptographic Keys

- S1.1: Impersonation using stolen keys from a compromised TPM.
- S1.2: Use of leaked session keys to forge V2X messages.
- S1.3: Replay of signed messages using extracted keys.
- T1.1: Attacker modifies stored key material to alter message signing results.
- T1.2: Injection of unauthorised keys into HSM key store.
- T1.3: Manipulation of key lifecycle states (e.g., reuse of expired keys).
- I1.1: Side-channel attack (e.g., timing analysis) leaks key usage patterns.

#### Log Data with Personal Context

- L6.1: Same log token reused across user sessions.
- L6.2: Logs correlated across domains.
- L6.3: Debug logs link user identity and location.
- I6.1: Logs store identifiable queries.
- I6.2: Unencrypted log transfer reveals personal data.
- I6.3: Diagnostics leak user IDs to cloud.
- N6.1: Anonymized log lacks sender reference.
  - N6.2: Logs modified without trace.
  - N6.3: Deletion of key attribution fields.
  - D6.1: RSU observer matches logs to vehicle.
  - D6.2: Offline analysis links logs to driver.
  - D6.3: Third-party access to raw logs.
  - D6.4: Plaintext export of logged location.

000

- 1. Introduction
- **2.** Methodology  $\rightarrow$  <u>Mitigation Plan</u>
- 3. Augmented Mitigation Plan
- 4. Conclusions

## Mitigation Plan

The mitigation plan is obtained in a two-level fashion

(L1: AI) LLM explores candidate mitigations with *ISO/IEC 27002 | GDPR* knowledge base

L2: Human) Experts refine the pairs threats-mitigations on system context and risk prioritisation

The output is a set of aligned **mitigations** covering both security and privacy threats

| Asset          | S            | Т           | R           | Ι            | D          | Е         |
|----------------|--------------|-------------|-------------|--------------|------------|-----------|
| Cryptographic  | sm1, sm2,    | sm2, sm3,   |             | sm2, sm7,    |            |           |
| Keys           | sm3, sm12,   | sm9, sm15,  |             | sm11, sm12,  |            |           |
|                | sm24         | sm24        |             | sm23, sm24,  |            |           |
|                |              |             |             | sm25, sm28   |            |           |
| Device Iden-   | sm2, sm3,    | sm9, sm16,  | sm13, sm15, | sm3, $sm7$ , |            | sm2, sm3, |
| tity           | sm5, sm20    | sm18        | sm34        | sm23, sm24   |            | sm3, sm20 |
| Authentication | sm2, sm3,    | sm9, sm15,  |             | sm3, $sm5$   |            |           |
| Credentials    | sm5, sm12    | sm16, sm18  |             | sm7, sm12,   |            |           |
|                |              |             |             | sm24         |            |           |
| Secure Boot    | sm5, sm9,    | sm9, sm16,  |             | sm3, $sm7$ , |            |           |
| Measures       | sm18, sm20,  | sm18, sm20, |             | sm11, sm12,  |            |           |
|                | sm25, sm27   | sm25, sm27  |             | sm15, sm16,  |            |           |
|                |              |             |             | sm18, sm20,  |            |           |
|                |              |             |             | sm24         |            |           |
| V2X Messages   | sm3, $sm5$ , | sm9, sm12,  |             | sm3, $sm7$ , |            |           |
| (Signed & En-  | sm20, sm24,  | sm16, sm24, |             | sm11, sm12,  |            |           |
| crypted)       | sm25         | sm25, sm27, |             | sm15, sm16,  |            |           |
|                |              | sm32        |             | sm24         |            |           |
| Secure Com-    | sm3, $sm5$ , | sm9, sm12,  | sm5, sm15,  | sm3, $sm7$ , | sm6, sm9,  | sm2, sm3, |
| munication     | sm20, sm21,  | sm16, sm20, | sm16, sm24, | sm11, sm12,  | sm14, sm20 | sm5, sm18 |
| Channels       | sm25, sm25   | sm24, sm25, | sm24        | sm24         |            |           |
|                |              | sm32        |             |              |            |           |
| Middleware     | sm2, sm3,    | sm9, sm12,  | sm5, sm15,  | sm3, $sm7$ , | sm6, sm9,  | sm2, sm3, |
| Interfaces     | sm5, sm20,   | sm16, sm20, | sm16, sm34  | sm11, sm12,  | sm14, sm20 | sm5, sm18 |
|                | sm21, sm24,  | sm24, sm25  |             | sm24         |            |           |
|                | sm24         |             |             |              |            |           |
| Logging and    |              | sm9. sm15.  | sm5. sm15.  | sm3. sm11.   |            |           |

Table 12: Mitigation plan for STRIDE-identified Threats at L1-L2

000

- 1. Introduction
- 2. Methodology
- 3. Augmented Mitigation Plan
- 4. Conclusions

## Zoom in on Augmented Mitigation Plan

Verticalise Zero Trust (ZT), Pseudonymisation (PS), Data Minimisation (DM) to automotive

These principles are *mapped* over the previous mitigation plan

We proceed in a two-level fashion also in this case



(L1: Human) Experts assess and map ZT/PS/DM to the controls from relevant standards
 (L2: AI) LLM confirms or perfects the mapping

3. Augmented Mitigation Plan

## Zero Trust in Automotive

NIST SP 800-207 meets vehicle as mobile digital platform

Interior: CAN / CAN FD, TSN Ethernet, ECUs

Exterior: OTA servers, mobile apps, V2X infrastructure



Core Roles (verticalised):

"Trust no bus, ECU or external endpoint"

**PEP (vehicular gateway)** enforces access rules on CAN / Ethernet

PDP (cloud) validates OTA updates, remote commands, data-access requests

**PAP / Policy Engine** orchestrate dynamic policies (e.g., driver identity, geolocation, SW version)

3. Augmented Mitigation Plan

## **Pseudonymisation in Automotive**

Asset-threat examples:

**VIN**  $\rightarrow$  fleet analytics; **Driver ID**  $\rightarrow$  shared-mobility logs; **GPS**  $\rightarrow$  route profiling

**Counter** – ensures internal traceability without external linkage

**RNG** – can be used for synthetic datasets or simulation

**Cryptographic hash** – can provide a fixed-length, irreversible pseudonym

MAC – allows only authorised parties to derive or validate the pseudonym

**Encryption** – suitable for reversible pseudonymisation where re-identification is required

## Data Minimisation in Automotive

**Recognise data sources:** identify which sensor/ECU streams are essential; discard non-critical data upstream

**Apply selection and filtering logic:** use local filtering, anonymisation, aggregation or deletion before telematics or app upload

**Design data-aware architectures:** ensure ECUs transmit only on-demand (e.g., throttle position sent only on diagnostic/error)

**Separate technical data from personal information:** send content metadata (e.g., media type) without user identity unless strictly required and consented

Handle GPS tracking with care: reduce transmission frequency or share derived context (e.g., "congested area") instead of raw coordinates

3. Augmented Mitigation Plan

## Augmented Mitigation Plan Results

 TABLE I

 Augmented Mitigations for STRIDE-identified Threats at L1-L2

| Asset             | S      | Т      | R      | I      | D | Е      |
|-------------------|--------|--------|--------|--------|---|--------|
| Cryptographic     | ZT,    | ZT,    |        | ZT,    |   |        |
| Keys              | DM     | DM     |        | DM     |   |        |
| Device Identity   | ZT, PS | ZT, PS | ZT, PS | ZT, PS |   | ZT, PS |
| Authentication    | ZT,    | ZT,    |        | ZT,    |   |        |
| Credentials       | DM     | DM     |        | DM     |   |        |
| Secure Boot Mea-  | ZT,    | ZT,    |        | ZT,    |   |        |
| sures             | DM     | DM     |        | DM     |   |        |
| V2X Messages      | ZT,    | ZT,    |        | ZT,    |   |        |
| (Signed &         | DM,    | DM,    |        | DM,    |   |        |
| Encrypted)        | PS     | PS     |        | PS     |   |        |
| Secure Communi-   | ZT,    | ZT,    | ZT,    | ZT,    | - | ZT,    |
| cation Channels   | DM,    | DM,    | DM,    | DM,    |   | DM,    |
|                   | PS     | PS     | PS     | PS     |   | PS     |
| Middleware Inter- | ZT,    | ZT,    | ZT,    | ZT,    | - | ZT,    |
| faces             | DM     | DM     | DM     | DM     |   | DM     |
| Logging and Au-   |        | ZT,    | ZT,    | ZT,    |   |        |
| dit Records       |        | DM,    | DM     | DM     |   |        |
|                   |        | PS     |        |        |   |        |
| Key Management    | ZT.    | ZT,    | ZT.    | ZT,    | - | ZT,    |
| Infrastructure    | DM,    | DM,    | DM,    | DM,    |   | DM,    |
|                   | PS     | PS     | PS     | PS     |   | PS     |
| RSU Trust Com-    | ZT,    | ZT,    | ZT,    | ZT,    | - | -      |
| ponents           | DM,    | DM     | DM,    | DM,    |   |        |
| L                 | PS     |        | PS     | PS     |   |        |

TABLE II Augmented Mitigations for LINDDUN-identified Threats at L1-L2

| Asset               | L   | I   | Ν   | D   | D   | U   | Ν   |
|---------------------|-----|-----|-----|-----|-----|-----|-----|
| Vehicle Identifiers | ZT, | ZT, | ZT, | ZT, |     |     | ZT, |
|                     | DM, | DM, | DM, | DM, |     |     | DM, |
|                     | PS  | PS  | PS  | PS  |     |     | PS  |
| Location            | ZT, | ZT, | ZT, | ZT, | ZT, | ZT, |     |
| Information         | DM  | DM  | DM  | DM  | DM  | DM  |     |
| Communication       | ZT, | ZT, | ZT, | ZT, | ZT, |     |     |
| Metadata            | DM  | DM  | DM  | DM  | DM  |     |     |
| User Behavior &     | ZT, | ZT, | ZT, | ZT, | -   | ZT, | ZT, |
| Preferences         | DM, | DM, | DM, | DM, |     | DM, | DM, |
|                     | PS  | PS  | PS  | PS  |     | PS  | PS  |
| Transmitted Mes-    |     | ZT, |     | ZT, | ZT, | ZT, |     |
| sage Content        |     | DM, |     | DM, | DM, | DM, |     |
|                     |     | PS  |     | PS  | PS  | PS  |     |
| Log Data with       | ZT, |
| Personal Context    | DM  |
| OTA Update          |     |     |     |     | ZT, | ZT, |     |
| Records             |     |     |     |     | DM  | DM  |     |
| Cloud-Linked        | ZT, | ZT, | ZT, | ZT, |     | ZT, | ZT, |
| Identifiers         | DM, | DM, | DM, | DM, |     | DM, | DM, |
|                     | PS  | PS  | PS  | PS  |     | PS  | PS  |

3. Augmented Mitigation Plan

# Takeaways

- + PS/DM selectively reinforce privacy controls
- + HAI loop improves both coverage and expert trust threats and their composition
- ZT is broadly applicable but not universal

- 1. Introduction
- 2. Methodology
- 3. Augmented Mitigation Plan
- 4. Conclusions

## Conclusions

We presented a primer on the **SCAR4SUD Framework** for **security and privacy in the automotive domain** 

It supports security-and-privacy aware automotive architectures rooted in **risk assessment** with a **multi-level HAI methodology** 

Future work:

- Model assurance, explainability
- Adversarial robustness of the AI components



## References

Project Website https://scar4sud-project.dmi.unict.it/



https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats #stride-model

https://linddun.org/

https://www.mozillafoundation.org/en/privacynotincluded/articles/its-official-cars-a re-the-worst-product-category-we-have-ever-reviewed-for-privacy/

https://cybernews.com/privacy/smart-cars-vs-privacy-a-driverless-car-could-generat e-100-gb-of-data-per-second/

https://techcrunch.com/2023/05/12/toyota-japan-exposed-millions-locations-videos/

Disclaimer: Icons in this presentation were obtained from www.flaticon.com

M. Raciti – IOLTS 2025

## Thanks for your attention!

For more information or questions:



mario.raciti@imtlucca.it - mario.raciti@phd.unict.it





@tsumarios



https://linkedin.com/in/marioraciti



Non-malicious QR (maybe)